Sunday, 30 November 2014

Web Scraping’s 2013 Review – part 2

As promised we came back with the second part of this year’s web scraping review. Today we will focus not only on events of 2013 that regarded web scraping but also Big data and what this year meant for this concept.

First of all, we could not talked about the conferences in which data mining was involved without talking about TED conferences. This year the speakers focused on the power of data analysis to help medicine and to prevent possible crises in third world countries. Regarding data mining, everyone agreed that this is one of the best ways to obtain virtual data.

Also a study by MeriTalk  a government IT networking group, ordered by NetApp showed this year that companies are not prepared to receive the informational revolution. The survey found that state and local IT pros are struggling to keep up with data demands. Just 59% of state and local agencies are analyzing the data they collect and less than half are using it to make strategic decisions. State and local agencies estimate that they have just 46% of the data storage and access, 42% of the computing power, and 35% of the personnel they need to successfully leverage large data sets.

Some economists argue that it is often difficult to estimate the true value of new technologies, and that Big Data may already be delivering benefits that are uncounted in official economic statistics. Cat videos and television programs on Hulu, for example, produce pleasure for Web surfers — so shouldn’t economists find a way to value such intangible activity, whether or not it moves the needle of the gross domestic product?

We will end this article with some numbers about the sumptuous growth of data available on the internet.  There were 30 billion gigabytes of video, e-mails, Web transactions and business-to-business analytics in 2005. The total is expected to reach more than 20 times that figure in 2013, with off-the-charts increases to follow in the years ahead, according to researches conducted by Cisco, so as you can see we have good premises to believe that 2014 will be at least as good as 2013.

Source:http://thewebminer.com/blog/2013/12/

Wednesday, 26 November 2014

Web Data Extraction: driving data your way

Most businesses rely on the web to gather data such as product specifications, pricing information, market trends, competitor information, and regulatory details. More often than not, companies collect this data manually—a process that not only takes a significant amount of time, but also has the potential to introduce costly errors.

By automating data extraction, you're able to free yourself (and your pointer finger) from hours of copy/pasting, eliminate human errors, and focus on the parts of your job that make you feel great.

Web data extraction: What it is, why it's used, and how to get it right on an ongoing basis

Web data extraction, screen scraping, web harvesting—while these terms may have different connotations they all essentially point to the same thing: plucking data from the web and populating it in an organized way in another place for further analysis or more focused use. In an era where “big data” has become a commonplace concept, the appeal of web data extraction has grown; it’s an extremely efficient alternative to web browsing, and culls very specific data for a focused purpose.

How it's used

While each company’s needs vary, data extraction is often used for:

    Competitive intelligence, including web popularity, social perception, other sites linking to them, and placement of competitor advertisements

    Gathering financial data including stock market movement, product pricing, and more

    Creating continuity between price sheets and online websites, catalogs, or inventory databases

    Capturing product specifications like dimensions, color, and materials

    Pulling tabular data from multiple sources for in-depth analysis

Interestingly, some people even find that web data extraction can aid them in their leisure time as well, pulling data from blogs and websites that pertain to their hobbies or interests, and creating their own library of organized information on a topic. Perhaps, for instance, you want a list of all the designers that George Clooney wears (hey- we won’t question what you do in your free time). By using web scraping tools, you could automatically extract this type of data from, say, a fashion blogger who follows celebrity style, and create your own up-to-date shopping list of items.

How it's done

When you think of gathering data from the web, you should mentally juxtapose two different images: one of gathering a bucket of sand one grain at a time, and one of filling a bucket with a shovel that has the perfect scoop size to fill it completely in one sitting. While clearly the second method makes the most sense, the majority of web data extraction happens much like the first process--manually, and slowly.

Let’s take a look at a few different ways organizations extract data today.

The least productive way: manually

While this method is the least efficient, it’s also the most widespread. On the plus side, you need to learn absolutely nothing except “Ctrl+C/V” to use this method, which explains why it is the generally preferred method, despite the hours of time it can take. Imagine, for instance, managing a sales spreadsheet that keeps inventory up to date so that the information can be properly disseminated to a global sales team. Not only does it take a significant amount of time to update the spreadsheet with information from, say, your internal database and manufacturer’s website, but information may change rapidly, leaving sales reps with inaccurate information regardless.

Finding someone in the organization with a talent for programming languages like Python

Generally, automating a task without dedicated automation software requires programming, and therefore an internal resource with a solid familiarity with programming languages to create the task and corresponding script. While most organizations do, in fact, have a resource in IT or engineering with this type of ability, it often doesn’t seem like a worthy time investment for that person to derail the initiatives he or she is working on to automate web data extraction. Additionally, if companies do choose to automate using in-house resources, that person will find himself beholden to a continuing obligation, since he or she will need to adjust scripting if web objects and attributes change, disabling the task.

Outsourcing via Elance or oDesk

Unless there is a dedicated resource ready to automate and maintain data extraction processes (and most organizations wouldn’t necessarily choose to use their in-house employee time this way), companies might turn to outsourcing companies such as Elance or oDesk to hire contract help. While this is an effective way to automate a task using a resource that has a level of acumen in automation, it represents an additional cost--be it one time or on a regular basis as data extraction requirements change or increase.

Using Excel web queries

Since more often than not, data extracted from the web is often populated into an Excel spreadsheet, it’s no wonder that Excel includes web query tools expressly for that purpose. These tools are particularly useful in pulling tabular data from a website (such as product specifications, legal codes, stock prices, and a host of other information) and automatically pushing the data into a spreadsheet. Excel queries do have limitations and a learning curve, however, particularly when creating dynamic web queries. And clearly, if you’re hoping to populate the information in other sources, such as external databases, there is yet another level of difficulty to navigate.

How automation simplifies web data extraction

Culling web data quickly

Using automation is the simplest way to extract web data. As you execute the steps necessary to perform the task one time, a macro recorder captures each action, automatically generates an easily-editable script, and lets you specify how often you would like to repeat the task, and at what speed.

Maintaining the highest level of accuracy

With humans copy/pasting data, or comparing between multiple screens and entering data manually into a spreadsheet, you’re likely to run into accuracy issues (sometimes directly proportionate to the amount of time spent on the task and amount of coffee in the office!) Automation software ensures that “what you see is what you get,” and that data is picked up from the web and put back down where you want it without a hitch.

Storing web data in your preferred format

Not only can you accurately transfer data with automation software, you can also ensure that it’s populated into spreadsheets or databases in the format you prefer. Rather than simply dumping the data into a spreadsheet, you can ensure that the right information is put into the proper column, row, field, and style (think, for instance, of the difference between writing a birth date as “03/13/1912” and “12/3/13”).

Simplifying data analysis

Automation software allows you to aggregate data from disparate sources or enormous stockpiles of structured or unstructured data in a way that makes sense for your business analysis needs. This way, the majority of employees in an organization can perform some level of analysis on their own, making it easier to surface information that informs business decisions.

Reacting to changes without a hitch

Because automation software is built to recognize icons, images, symbols, and other objects regardless of their position on a screen, it can automate processes in a self-perpetuating manner. For example, let’s say you automate data retrieval from a certain chart on a retailer’s website without automation software. If the retailer decides to move that object to another area of the screen, your task would no longer produce accurate results (or work at all), leaving you to make changes to the script (or find someone who can), or re-record the task altogether. With image recognition capabilities, however, the system “memorizes” the object itself, not merely its coordinates, so that the task can continue to run irrespective of changes.

The wide sweeping appeal of automation software

Companies often pick a comprehensive automation solution not only because of its ability to effectively automate any web data extraction task, but also because it goes beyond data extraction. Automation software can permeate into other areas of the business as well, making tasks such as application integration, data migration, IT processes, Excel automation, testing, and routine tasks such as launching applications or formatting files faster and more accurate. Because it requires no programming experience to use, adoption rates are higher and businesses get more “bang for their buck.”

Almost any organization can benefit from using automation software, particularly as they grow and scale. If you are looking to quit “moving grains of sand” and start claiming back time in your day, there are a few steps you can take:

 Watch a short video that shows how web data extraction is done with automation software

 Download a free trial and start reaping the benefits of downloading even just a couple of tasks today.

 See how tasks are automated with our short, step-by-step how-to-sheets (and then give it a try yourself!)

Source: https://www.automationanywhere.com/web-data-extraction

Wednesday, 19 November 2014

Web Scraping for Fun & Profit

There’s a number of ways to retrieve data from a backend system within mobile projects. In an ideal world, everything would have a RESTful JSON API – but often, this isn’t the case.Sometimes, SOAP is the language of the backend. Sometimes, it’s some proprietary protocol which might not even be HTTP-based. Then, there’s scraping.

Retrieving information from web sites as a human is easy. The page communicates information using stylistic elements like headings, tables and lists – this is the communication protocol of the web. Machines retrieve information with a focus on structure rather than style, typically using communication protocols like XML or JSON. Web scraping attempts to bridge this human protocol into a machine-readable format like JSON. This is what we try to achieve with web scraping.

As a means of getting to data, it don’t get much worse than web scraping. Scrapers were often built with Regular Expressions to retrieve the data from the page. Difficult to craft, impossible to maintain, this means of retrieval was far from ideal. The risks are many – even the slightest layout change on a web page can upset scraper code, and break the entire integration. It’s a fragile means for building integrations, but sometimes it’s the only way.

Having built a scraper service recently, the most interesting observation for me is how far we’ve come from these “dark days”. Node.js, and the massive ecosystem of community built modules has done much to change how these scraper services are built.

Effectively Scraping Information

Websites are built on the Document Object Model, or DOM. This is a tree structure, which represents the information on a page.By interpreting the source of a website as a DOM, we can retrieve information much more reliably than using methods like regular expression matching. The most popular method of querying the DOM is using jQuery, which enables us to build powerful and maintainable queries for information. The JSDom Node module allows us to use a DOM-like structure in serverside code.

For purpose of Illustration, we’re going to scrape the blog page of FeedHenry’s website. I’ve built a small code snippet that retrieves the contents of the blog, and translates it into a JSON API. To find the queries I need to run, first I need to look at the HTML of the page. To do this, in Chrome, I right-click the element I’m looking to inspect on the page, and click “Inspect Element”.

Screen Shot 2014-09-30 at 10.44.38

Articles on the FeedHenry blog are a series of ‘div’ elements with the ‘.itemContainer’ class

Searching for a pattern in the HTML to query all blog post elements, we construct the `div.itemContainer` query. In jQuery, we can iterate over these using the .each method:

var posts = [];

$('div.itemContainer').each(function(index, item){

  // Make JSON objects of every post in here, pushing to the posts[] array

});

From there, we pick off the heading, author and post summary using a child selector on the original post, querying the relevant semantic elements:

    Post Title, using jQuery:

    $(item).find('h3').text()trim() // trim, because titles have white space either side

    Post Author, using jQuery:

    $(item).find('.catItemAuthor a').text()

    Post Body, using jQuery:

    $(item).find('p').text()

Adding some JSDom magic to our snippet, and pulling together the above two concept (iterating through posts, and picking off info from each post), we get this snippet:

var request = require('request'),

jsdom = require('jsdom');

jsdom.env(

  "http://www.feedhenry.com/category/blog",

  ["http://code.jquery.com/jquery.js"],

  function (errors, window) {

    var $ = window.$, // Alias jQUery

    posts = [];

    $('div.itemContainer').each(function(index, item){

      item = $(item); // make queryable in JQ

      posts.push({

        heading : item.find('h3').text().trim(),

        author : item.find('.catItemAuthor a').text(),

        teaser : item.find('p').text()

      });

    });

    console.log(posts);

  }

);

A note on building CSS Queries

As with styling web sites with CSS, building effective CSS queries is equally as important when building a scraper. It’s important to build queries that are not too specific, or likely to break when the structure of the page changes. Equally important is to pick a query that is not too general, and likely to select extra data from the page you don’t want to retrieve.

A neat trick for generating the relevant selector statement is to use Chrome’s “CSS Path” feature in the inspector. After finding the element in the inspector panel, right click, and select “Copy CSS Path”. This method is good for individual items, but for picking repeating patterns (like blog posts), this doesn’t work though. Often, the path it gives is much too specific, making for a fragile binding. Any changes to the page’s structure will break the query.

Making a Re-usable Scraping Service

Now that we’ve retrieved information from a web page, and made some JSON, let’s build a reusable API from this. We’re going to make a FeedHenry Blog Scraper service in FeedHenry3. For those of you not familiar with service creation, see this video walkthrough.

We’re going to start by creating a “new mBaaS Service”, rather than selecting one of the off-the-shelf services. To do this, we modify the application.js file of our service to include one route, /blog, which includes our code snippet from earlier:

// just boilerplate scraper setup

var mbaasApi = require('fh-mbaas-api'),

express = require('express'),

mbaasExpress = mbaasApi.mbaasExpress(),

cors = require('cors'),

request = require('request'),

jsdom = require('jsdom');

var app = express();

app.use(cors());

app.use('/sys', mbaasExpress.sys([]));

app.use('/mbaas', mbaasExpress.mbaas);

app.use(mbaasExpress.fhmiddleware());

// Our /blog scraper route

app.get('/blog', function(req, res, next){

  jsdom.env(

    "http://www.feedhenry.com/category/blog",

    ["http://code.jquery.com/jquery.js"],

    function (errors, window) {

      var $ = window.$, // Alias jQUery

      posts = [];

      $('div.itemContainer').each(function(index, item){

        item = $(item); // make queryable in JQ

        posts.push({

          heading : item.find('h3').text().trim(),

          author : item.find('.catItemAuthor a').text(),

          teaser : item.find('p').text()

        });

      });

      return res.json(posts);

    }

  );

});

app.use(mbaasExpress.errorHandler());

var port = process.env.FH_PORT || process.env.VCAP_APP_PORT || 8001;

var server = app.listen(port, function() {});

We’re also going to write some documentation for our service, so we (and other developers) can interact with it using the FeedHenry discovery console. We’re going to modify the README.md file to document what we’ve just done using API Blueprint documentation format:

# FeedHenry Blog Web Scraper

This is a feedhenry blog scraper service. It uses the `JSDom` and `request` modules to retrieve the contents of the FeedHenry developer blog, and parse the content using jQuery.

# Group Scraper API Group

# blog [/blog]

Blog Endpoint

## blog [GET]

Get blog posts endpoint, returns JSON data.

+ Response 200 (application/json)

    + Body

            [{ blog post}, { blog post}, { blog post}]

We can now try out the scraper service in the studio, and see the response:

Scraping – The Ultimate in API Creation?

Now that I’ve described some modern techniques for effectively scraping data from web sites, it’s time for some major caveats. First,  WordPress blogs like ours already have feeds and APIs available to developers - there’s no need to ever scrape any of this content. Web Scraping is not a replacement for an API. It should be used only as a last resort, after every endeavour to discover an API has already been made. Using a web scraper in a commercial setting requires much time set aside to maintain the queries, and an agreement with the source data is being scraped on to alert developers in the event the page changes structure.

With all this in mind, it can be a useful tool to iterate quickly on an integration when waiting for an API, or as a fun hack project.

Source: http://www.feedhenry.com/web-scraping-fun-profit/

Saturday, 15 November 2014

A Web Scraper’s Guide to Kimono

Being a frequent reader of Hacker News, I noticed an item on the front page earlier this year which read, “Kimono – Never write a web scraper again.” Although it got a great number of upvotes, the tech junta was quick to note issues, especially if you are a developer who knows how to write scrapers. The biggest concern was a non-intuitive UX, followed by the inability of the first beta version to extract data items from websites as smoothly as the demo video suggested.

I decided to give it a few months before I tested it out, and I finally got the chance to do so recently.

Kimono is a Y-Combinator backed startup trying to do something in a field where others have failed. Kimono is focused on creating APIs for websites which don’t have one, another term would be web scraping. Imagine you have a website which shows some data you would like to dynamically process in your website or application. If the website doesn’t have an API, you can create one using Kimono by extracting the data items from the website.

Is it Legal?

Kimono provides an FAQ section, which says that web scraping from public websites “is 100% legal” as long as you check the robots.txt file to see which URL patterns they have disallowed. However, I would advise you to proceed with caution because some websites can pose a problem.

A robots.txt is a file that gives directions to crawlers (usually of search engines) visiting the website. If a webmaster wants a page to be available on search engines like Google, he would not disallow robots in the robots.txt file. If they’d prefer no one scrapes their content, they’d specifically mention it in their Terms of Service. You should always look at the terms before creating an API through Kimono.

An example of this is Medium. Their robots.txt file doesn’t mention anything about their public posts, but the following quote from their TOS page shows you shouldn’t scrape them (since it involves extracting data from their HTML/CSS).

    For the remainder of the site, you may not duplicate, copy, or reuse any portion of the HTML/CSS, JavaScipt, logos, or visual design elements without express written permission from Medium unless otherwise permitted by law.

If you check the #BuiltWithKimono section of their website, you’d notice a few straightforward applications. For instance, there is a price comparison API, which is built by extracting the prices from product pages on different websites.

Let us move on and see how we can use this service.

What are we about to do?

Let’s try to accomplish a task, while exploring Kimono. The Blog Bowl is a blog directory where you can share and discover blogs. The posts that have been shared by users are available on the feeds page. Let us try to get a list of blog posts from the page.

The simple thought process when scraping the data is parsing the HTML (or searching through it, in simpler terms) and extracting the information we require. In this case, let’s try to get the title of the post, its link, and the blogger’s name and profile page.

Source: http://www.sitepoint.com/web-scrapers-guide-kimono/

Monday, 10 November 2014

Data Scraping vs. Data Crawling

One of our favorite quotes has been- ‘If a problem changes by an order, it becomes a totally different problem’ and in this lies the answer to- what’s the difference between scraping and crawling?

Crawling usually refers to dealing with large data-sets where you develop your own crawlers (or bots) which crawl to the deepest of the web pages. Data scraping on the other hand refers to retrieving information from any source (not necessarily the web). It’s more often the case that irrespective of the approaches involved, we refer to extracting data from the web as scraping (or harvesting) and that’s a serious misconception.

=>Below are some differences in our opinion- both evident and subtle

1.    Scraping data does not necessarily involve the web. Data scraping could refer to extracting information from a local machine, a database, or even if it is from the internet, a mere “Save as” link on the page is also a subset of the data scraping universe. Crawling on the other hand differs immensely in scale as well as in range. Firstly, crawling = web crawling which means on the web, we can only “crawl” data. Programs that perform this incredible job are called crawl agents or bots or spiders (please leave the other spider in spiderman’s world). Some web spiders are algorithmically designed to reach the maximum depth of a page and crawl them iteratively (did we ever say scrape?).

2.    Web is an open world and the quintessential practising platform of our right to freedom. Thus a lot of content gets created and then duplicated. For instance, the same blog might be posted on different pages and our spiders don’t understand that. Hence, data de-duplication (affectionately dedup) is an integral part of data crawling. This is done to achieve two things- keep our clients happy by not flooding their machines with the same data more than once, and saving our own servers some space. However, dedup is not necessarily a part of data scraping.

3.    One of the most challenging things in the web crawling space is to deal with coordination of successive crawls. Our spiders have to be polite with the servers that they hit so that they don’t piss them off and this creates an interesting situation to handle. Over a period of time, our intelligent spiders have to get more intelligent (and not crazy!) and learn to know when and how much to hit a server in order to crawl data on its web pages while complying with its politeness policies.

4.    Finally, different crawl agents are used to crawl different websites and hence you need to ensure they don’t conflict with each other in the process. This situation never arises when you intend to just scrape data.

On a concluding note, scraping represents a very superficial node of crawling which we call extraction and that again requires few algorithms and some automation in place.

Source:https://www.promptcloud.com/blog/data-scraping-vs-data-crawling/

Wednesday, 5 November 2014

Web Scraping Popularity Soars

The world is stirred because of the ever-growing web scraping success in almost all of its services. Success stories pertaining to the benefits of online data collection in business, research, politics, health, and almost all aspects of human life are endless. With this popularity surge, it has become a hot issue and many are questioning its legality and reliability.

Looking back, this simple harvesting of pertinent data from competitors and the global market in general like anything else started as a non-threatening and advanced form of web research. Eventually, when the benefits begin to manifest and the system improves, many are lured into it that it has become one of the strongest and fastest growing business in the world.

Simple Beginnings

As naturally as a law of life that great things come from small beginnings, data mining was conceived as a process in gaining information, mostly in research. This act of collecting information through the internet was never imagined to be what it has become nowadays.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/web-scraping-popularity-soars/